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Headline: 
 
Small asteroid penetrates 
Earth’s atmosphere 
 

& catastrophically 
disrupts over Russia 

© M. Ahmetvaleev\JPL PIA 16828 

THE NEWS OF FRIDAY, FEBRUARY 15,  2013 

Reasonable (predictive) questions: 
 
Was it an ordinary chondritic asteriod?  Yes 
 

Was it internally brecciated?  Yes 
 

Was it cross-cut with shock veins?  Yes 
 

Chelyabinsk Air Burst 
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EXPLOSIVE FRAGMENTATION OF SMALL STONY ASTEROIDS 

Previously, the largest 
documented explosive 
fragmentation of an 
ordinary chondritic asteroid 
occurred over 
northwestern Arizona in 
the Gold Basin area.   

The Gold Basin, Arizona, Event 
~20,000 years ago 
See Kring et al. (2001) 
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2001   D. A. Kring, A. J. T. Jull, L. R. McHargue, P. A. Bland, D. H. Hill, and F. J. Berry, “Gold Basin meteorite strewn field, Mojave Desert, northwestern Arizona: Relic of a small Late Pleistocene impact event,” Meteoritics and Planetary Science 36, pp. 1057–1066. 



EXPLOSIVE FRAGMENTATION OF SMALL STONY ASTEROIDS 

That event involved an ~7-meter 
diameter NEA with the kinetic 
energy equivalent to 5 to 50 kt of 
TNT.   
 
(This object is similar in size to 
that being targeted by ARM.) 
 
Several thousand relics of the 
asteroid were found in the desert, 
from which an artistic 
reconstruction was produced (left).  
 
See Kring et al. (2001) for details. 
 
Fragmentation is common for NEA 
of this size and type of material. 
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Table 8.3.  Small (≲1 km) diameter impact pits and impact craters. 

Crater Locality Diameter Projectile Age 
(km) (Ma) 

                                                                                                                                                                                         
Haviland Kansas, USA 0.011 Pallasite 0 
Dalgaranga Western Australia, Australia   0.021 Mesosiderite 0.025 
Sikhote Alin Primorskiy Kray, Russia 0.027 IIAB 0 
Campo del Cielo* Gran Chaco Gualamba, Argentina 0.05 IAB <0.004 
Sobolev Primorye Territory, Russia 0.053 Iron 0 
Veevers Western Australia, Australia 0.08 IIAB <1 
Ilumetsa Estonia 0.08 ? >0.002 
Wabar* Rub' al Khali, Saudi Arabia 0.097 IIIAB 0.006 ± 0.002 
Morasko* Poznan, Poland 0.1 IAB 0.01 
Kaalijarvi* Saaremaa, Estonia 0.11 IAB 0.004 ± 0.001 
Henbury* Northern Territory, Australia 0.157 IIIAB <0.005 
Odessa* Texas, USA 0.168 IAB <0.05 
Boxhole Northern Territory, Australia 0.17 IIIAB 0.03 
Macha* Russia 0.3 Iron <0.007 
Aouelloul Adrar, Mauritania 0.39 Iron or Pallasite 3.1 ± 0.3 
Amguid Algeria 0.45 ? <0.1 
Monturaqui Antofagasta, Chile 0.46 IAB <1 
Kalkkop South Africa 0.64 ? <1.8 
Wolfe Creek Western Australia, Australia 0.87 IIIAB <0.3 
Tswaing South Africa 1.13 Chondrite 0.220 ± 0.052 
Barringer Arizona, USA 1.19 IAB 0.049 ± 0.003 
                                                                                                                                                                                         
Compiled from Grieve (1991), Grieve et al. (1995), Koeberl et al. (1994), and Koeberl et al. (1998). 
*Crater field; diameter of largest crater listed. 

SMALL IMPACT CRATERS ARE DOMINATED BY IRON ASTEROIDS 

Table from Kring (2007) 
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ODESSA IMPACT CRATER FIELD, WEST TEXAS 
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ODESSA IMPACT CRATER FIELD, WEST TEXAS 
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ODESSA IMPACT CRATER FIELD, WEST TEXAS 

Kring/LPI 
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Main crater produced by iron NEA fragment ~2 to 4 meters in diameter. 
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COMPONENTS OF IMPACT AIR BLASTS 

• Shock waves are produced by objects moving faster than the speed of sound (i.e.,  
Mach 1).  Impacting NEAs penetrate the atmosphere with a speed equal to or in 
excess of 11.2 km/s (≥25,000 mph or ≥ Mach 35), producing a ballistic shock 
wave.  The Chelyabinsk NEA was moving at Mach 60 to 61. 

• A second, explosive shock wave, is produced when the object catastrophically 
fragments in the atmosphere or hits the surface to produce an impact crater 

• The shock waves are accompanied by high-velocity air blasts 
 
 

• Similar effects were measured around nuclear 
     explosion test sites 

David A. Kring 



COMPONENTS OF IMPACT AIR BLASTS 

Shock overpressures 
 
An explosive fragmentation 
event or a cratering event 
produces a blast wave that 
radiates outward. 
 

At any particular point, the 
pressure increases nearly 
instantaneously when the 
shock front arrives. 
 

The pressure produced by a 
shock front is usually 
characterized in terms of 
overpressure, which is the 
amount of pressure that 
exceeds ambient atmospheric 
pressure (14.7 psi for 
standard sea level conditions). 

Schematic diagram illustrating the variation of overpressure in air at 
successive times (t1, t2, etc.) as a function of distance.  Figure 1 of Kring 
(1997); after Glasstone and Dolan (1977).  
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ODESSA IMPACT CRATER FIELD, WEST TEXAS 
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BARRINGER METEORITE CRATER (aka METEOR CRATER), ARIZONA 

David A. Kring 
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CASE STUDY OF AN IMPACT AIR BLAST – BARRINGER (METEOR) CRATER 

Photograph © David A. Kring 

Run Video 

Video available for download from 
http://www.lpi.usra.edu/publications/books/barringer_crater_guidebook/flyover/ 
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CASE STUDY OF AN IMPACT AIR BLAST – BARRINGER (METEOR) CRATER 

• 175 million metric tons of rock were excavated in a brief geologic moment 
• The horizontal layers of the upper Grand Canyon sequence were uplifted 

dramatically in the crater walls 
• A portion of the Earth’s crust was also vaporized, melted, and heavily fractured 
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WHEN A NEWSPAPER REPORTS AN ASTEROID BEING TWO TIMES LARGER 

Stony asteroid 
20 meters diameter 

 

Asteroid art by Daniel D. Durda 
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WHEN A NEWSPAPER REPORTS AN ASTEROID BEING TWO TIMES LARGER 

Stony asteroid 
20 meters diameter 

 

Stony asteroid 
40 meters diameter 

 

“2 times larger” 

Asteroid art by Daniel D. Durda 
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WHEN A NEWSPAPER REPORTS AN ASTEROID BEING TWO TIMES LARGER 

Stony asteroid 
20 meters diameter 

 

Stony asteroid 
40 meters diameter 

 

“2 times larger” 

8 times larger volume 
8 times larger mass 

Asteroid art by Daniel D. Durda 
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WHEN A NEWSPAPER REPORTS AN ASTEROID BEING TWO TIMES LARGER 

Stony asteroid 
20 meters diameter 

 

Stony asteroid 
40 meters diameter 

 

“2 times larger” “2 times larger” 

Iron asteroid 
40 meters diameter 

8 times larger volume 
8 times larger mass 

Left and center asteroids by Daniel D. Durda 

David A. Kring 

Presenter
Presentation Notes
Kring (2013) unpublished illustration sequence.



WHEN A NEWSPAPER REPORTS AN ASTEROID BEING TWO TIMES LARGER 

Stony asteroid 
20 meters diameter 
Density = 2 g/cm3 

 

Stony asteroid 
40 meters diameter 
Density = 2 g/cm3 

 

“2 times larger” 

Iron asteroid 
40 meters diameter 
Density = 7 g/cm3 

8 times larger volume 
8 times larger mass 

8 times larger volume 
28 times larger mass 

“2 times larger” 

Left and center asteroids by Daniel D. Durda 
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WHEN A NEWSPAPER REPORTS AN ASTEROID BEING TWO TIMES LARGER 

Stony asteroid 
20 meters diameter 
Density = 2 g/cm3 

 

Stony asteroid 
40 meters diameter 
Density = 2 g/cm3 

 

“2 times larger” 

Iron asteroid 
40 meters diameter 
Density = 7 g/cm3 

8 times larger volume 
8 times larger mass 

8 times larger volume 
28 times larger mass 

KE ~ 500 kt 
(Chelyabinsk) 

KE ~ 4 Mt KE ~ 14 Mt 
(Meteor Crater) 

“2 times larger” 
Left and center asteroids by Daniel D. Durda 
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CASE STUDY OF AN IMPACT AIR BLAST – BARRINGER (METEOR) CRATER 

Small cratering events 
 
In small events, a fireball, 
shock wave, and airblast are 
the major environmental 
effects. 
 
The blast effect was 
immediately lethal for human-
sized animals within the inner 
6 km diameter circle.   
 
Severe lung damage would 
occur within the next 10-12 
km diameter circle due to the 
pressure pulse alone and 
animals would be severely 
injured and unlikely to survive.   

20-50 m iron asteroid 
~50,000 yrs ago 
Northern Arizona 

See Kring (1997) and Grieve and Kring (2007) for details. 
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Figure 1.4 from Grieve and Kring (2007).  Estimates of the pressure pulse and airblast damage associated with the Barringer impact event in northern Arizona.  The blast effect was immediately lethal for human-sized animals within the inner 6 km diameter circle.  Severe lung damage would occur within the next 10-12 km diameter circle due to the pressure pulse along and animals would be severely injured and unlikely to survive.  Winds would exceed 1500 km/hr within the inner circle and still exceed 100 km/hr at radial distances of 25 km (3rd circle).  The outermost ~50 km circle represents the outer limit of severe to moderate damage to trees and human-structures of comparable strength.  Such an event today would decimate the population of an urban area equivalent to the size of Kansas City, U.S.A. (population 425,000).  See Kring (1997) for additional details.  Background image is a detail from space shuttle Columbia image #STS040-614-058.
1997   D. A. Kring, “Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment,” Meteoritics and Planetary Science 32, pp. 517–530.
2007   R. A. F. Grieve and D. A. Kring, “The geologic record of destructive impact events on Earth,” In Comet/Asteroid Impacts and Human Society, P. Bobrowsky and H. Rickman (eds.), Springer, Berlin, pp. 3–24. Invited paper.




CASE STUDY OF AN IMPACT AIR BLAST – BARRINGER (METEOR) CRATER 

Small cratering events 
 
Winds would exceed 1500 
km/hr within the inner circle 
and still exceed 100 km/hr at 
radial distances of 25 km (3rd 
circle).   
 
The outermost ~50 km circle 
represents the outer limit of 
severe to moderate damage 
to trees and human-structures 
of comparable strength.   

20-50 m iron asteroid 
~50,000 yrs ago 
Northern Arizona 

See Kring (1997) and Grieve and Kring (2007) for details. 

Air blast >1500 km/hr 
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Figure 1.4 from Grieve and Kring (2007).  Estimates of the pressure pulse and airblast damage associated with the Barringer impact event in northern Arizona.  The blast effect was immediately lethal for human-sized animals within the inner 6 km diameter circle.  Severe lung damage would occur within the next 10-12 km diameter circle due to the pressure pulse along and animals would be severely injured and unlikely to survive.  Winds would exceed 1500 km/hr within the inner circle and still exceed 100 km/hr at radial distances of 25 km (3rd circle).  The outermost ~50 km circle represents the outer limit of severe to moderate damage to trees and human-structures of comparable strength.  Such an event today would decimate the population of an urban area equivalent to the size of Kansas City, U.S.A. (population 425,000).  See Kring (1997) for additional details. Background image is a detail from space shuttle Columbia image #STS040-614-058.
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LETHAL EFFECTS OF SHOCK WAVE AND AIR BLAST 

 Kring (1997), Davis & Kring (2000), Kring (2007) 

Painting by © Denny Carley, based 
on paleontological research by  
Larry Agenbroad and Jim Mead 
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Megafauna that may have existed in a grassland community on the Colorado Plateau 50,000 
     years ago.  From left to right are camels (Camelops hesternus), giant short-faced bear
     (Arctodus simus), bison (Bison bison), mastodons (Mammut americanum), Harlan’s ground
     sloth (Glassotherium harlani), and mammoths (Mammuthus columbi).  Painting by Denny
     Carley, based on paleontological research by Larry Agenbroad and Jim Mead, appearing in
     Kring (1997).
1997   D. A. Kring, “Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment,” Meteoritics and Planetary Science 32, pp. 517–530.
2007  D. A. Kring, Guidebook to the Geology of Barringer Meteorite Crater, Arizona (aka Meteor Crater), Lunar and Planetary Institute (Contribution No. 1355), Houston, 150 pp.




COMPARING THE BLAST EFFECTS OF ODESSA AND BARRINGER CRATERS 

Relative damage zones 
 
The effects of the Odessa 
impact, while locally dramatic, 
were far more limited than 
those produced around the 
Barringer impact crater. 
 
The effects of Odessa 
(innermost yellow circle) did 
not extend to a distance any 
larger than the continuous 
ejecta blanket of Barringer 
crater (about 2 km), while the 
effects of the Barringer imapct 
extended tens of kilometers 
(larger red, yellow, and blue 
circles). 
 Modified after Kring (1997) 

David A. Kring 

Presenter
Presentation Notes
1997   D. A. Kring, “Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment,” Meteoritics and Planetary Science 32, pp. 517–530.




CASE STUDY OF AN IMPACT AIR BLAST – BARRINGER (METEOR) CRATER 

Small cratering events 
 
Such an event today could 
decimate the population of an 
urban area equivalent to the 
size of Kansas City, U.S.A. 
(population 425,000).   
 

20-50 m iron asteroid 
~50,000 yrs ago 
Northern Arizona 

40 km circle corresponding to severe to 
moderate damage. 

See Kring (1997) and Grieve and Kring (2007) for details. 
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Figure 1.4 from Grieve and Kring (2007).  Estimates of the pressure pulse and airblast damage associated with the Barringer impact event in northern Arizona.  The blast effect was immediately lethal for human-sized animals within the inner 6 km diameter circle.  Severe lung damage would occur within the next 10-12 km diameter circle due to the pressure pulse along and animals would be severely injured and unlikely to survive.  Winds would exceed 1500 km/hr within the inner circle and still exceed 100 km/hr at radial distances of 25 km (3rd circle).  The outermost ~50 km circle represents the outer limit of severe to moderate damage to trees and human-structures of comparable strength.  Such an event today would decimate the population of an urban area equivalent to the size of Kansas City, U.S.A. (population 425,000).  See Kring (1997) for additional details.
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CASE STUDY OF AN IMPACT AIR BLAST – MANICOUAGAN 

Manicouagan 
 
Larger impact cratering 
events will produce air 
blasts that affect a larger 
area. 
 
Manicouagan is a crater 
with a diameter of ~100 
km. 
 
That impact air blast 
affected a large fraction 
of Canada (over a 
diameter of ~1,100 km). Grieve and Kring (2007) 

David A. Kring 
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Figure 1.6 from Grieve and Kring (2007).  Extent of airblast produced by the Manicouagan impact event.  Near the impact site wind speeds would have exceeded 100 km/hr and eventually decelerated to hurricane-force winds at the largest distances.  The white circular line corresponds to the limit of 4 psi (27 kPa) peak overpressures derived from Toon et al. (1997) (see also Fig. 1.5), which has the capacity to severely damage and kill planst and animals (Kring, 1997).  The radial distance of the 4 psi limit is approximately 560 km.
1997   D. A. Kring, “Air blast produced by the Meteor Crater impact event and a reconstruction of the affected environment,” Meteoritics and Planetary Science 32, pp. 517–530.
2007   R. A. F. Grieve and D. A. Kring, “The geologic record of destructive impact events on Earth,” In Comet/Asteroid Impacts and Human Society, P. Bobrowsky and H. Rickman (eds.), Springer, Berlin, pp. 3–24. Invited paper.




L. Alvarez et al. (1980) 
 
     Confirmed quickly by 
     3 other laboratories 
 
     Ir anomalies found at 
     >100 K-T boundary sites 

CASE STUDY OF AN IMPACT AIR BLAST – CHICXULUB CRATER 

Kring/LPI 
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CASE STUDY OF AN IMPACT AIR BLAST – CHICXULUB CRATER 

Dinosaur-killing event 
 
At the extremely large 
end of the spectrum is 
the Chicxulub impact 
event that caused a 
mass extinction 65 
million years ago. 
 
This event produced a 
crater about 180 km in 
diameter. 
 
The NEO was likely a 
carbonaceous chondritic 
asteroid, although a 
carbonaceous-bearing 
comet cannot yet be 
ruled out. 

Kring et al. (1991); Hildebrand et al. (1991) 
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Full-length report with additional geophysical data:  1991   A. R. Hildebrand, G. T. Penfield, D. A. Kring, M. Pilkington, A. Camargo Z., S. Jacobsen, and W. V. Boynton, "The Chicxulub Crater: A possible Cretaceous-Tertiary boundary impact crater on the Yucatán Peninsula, Mexico," Geology 19, pp. 867–871. 

Evidence that Chicxulub formed precisely at the K-T boundary when the extinctions occurred:  1992   D. A. Kring and W. V. Boynton, "The petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti," Nature 358, pp. 141–144. 

Review article:  2007   D. A. Kring, “The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary,” Palaeogeography, Palaeoclimatology, Palaeoecology 255, pp. 4-21.  Invited paper.




Kring (1993) 

Background painting  © 1991 William K. Hartmann 
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CASE STUDY OF AN IMPACT AIR BLAST – CHICXULUB CRATER 

Dinosaur-killing event 
 
At the extremely large 
end of the spectrum is 
the Chicxulub impact 
event that caused a 
mass extinction 65 
million years ago. 
 
The air blast produced 
by that impact event 
affected a large fraction 
of North America. 
 
The airblast is only one 
of many environmental 
effects produced by this 
size of impact event. 

See Emiliani et al. (1981) and Kring (2007) for details. 
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Modified after Figure 1.5 of Grieve and Kring (2007).  Please see that paper or PPTx 
notes (below) for a description of the uncertainties associated with the data plotted in the 
diagram 
 

IMPACT AIR BLASTS OF DIFFERENT SIZES 

Impact air blasts 
 
The Chelyabinsk event is 
at the extreme (small) 
end of the types of 
events that produce air 
blasts. 
 

Less frequent, larger 
events can affect larger 
areas. 
 
As the world’s population 
grows and occupies a 
larger fraction of the 
Earth’s surface, events 
like Chelyabinsk will 
potentially affect more 
people. 
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Kring et al. (2002) 

To produce a global 
mass extinction event, 
however, other 
processes are required. 
 
Those processes are 
linked to the production 
of a vapor-rich plume of 
impact ejecta 
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Geologic Evidence of Fires 

g Atmospheric heating may have been sufficient to spontaneously ignite fires 
(e.g., orange-colored regions that cover land 
 

g Soot produced from burning vegetation is found in K/T 
         boundary sediments 

g  A biologic signature of wildfires, a fern spore spike, is also 
        found immediately after the impact event 
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Limestone 
 

CaCO3 
 
 

CaO  +  CO2 
 Generates 

greenhouse-warming gas 

Anhydrite 
 

CaSO4 
 
 

CaO  +  SO3 
 Generates sulphate aerosols 

& sulfuric acid rain 
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Pierazzo, Kring, and Melosh (1998) 
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   Mass       Mass Added  Enrichment 
Degassed    to Atmosphere    Factor* 
   (GT)             (GT) 

    CO2   830 - 910        575 - 625     < 1.2 
 
    S   110 - 140          55 - 70  5.5-7 x 105 
 

    H2O   385 - 415        385 - 415  130 - 140 

10 km diameter projectile, 180 km diameter crater, 10% porosity 
* In the case of CO2, the value is relative to the late-Cretaceous atmosphere; 
   in the case of S and H2O, the values are relative to the modern stratosphere. 

(An even larger amount of CO2 (plus CO and CH4) was produced by the impact- 
   generated wildfires.)  
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Impact heating 
alters the nitrogen chemistry 

of the atmosphere, 
leading to nitric acid rain 

Shock & radiative heating produces 3 × 1010 to 9 × 1012 metric tons of NO  
(e.g., work by Lewis, Prinn, Fegley, & Zahnle in several papers 1983-1990).  
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Wildfires 
Loss of ozone 

Acid rain 

Kring (2000) 
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SUMMARY 

• Small stony NEA strike far more often than small iron NEA 
 

• Small stony NEA are more likely to catastrophically fragment in the atmosphere 
&, if sufficiently large, will produce a shock wave and air blast that reaches the 
ground (e.g., Tunguska, Chelyabinsk) 
 

• In contrast, small iron NEA of the same size may reach the ground largely intact; 
they may begin to fragment, producing multiple small craters (e.g., Odessa), or 
produce a single large crater (e.g., Barringer). 
 

• In these relatively small cratering events, the dominant environmental effects are 
a fireball, shock wave, air blast, and local burial beneath ejecta. 
 

• Larger NEA, such as the one that produced the Chicxulub crater, create those 
same effects, but also have the capability of distributing environmentally 
devastating debris globally. 
 

• The smaller events, while less damaging, occur more frequently. 
 

• A Meteor Crater-size impact event has the capacity to destroy a modern city. 
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Thank you. 
 
Questions? 

David A. Kring 



For more details of the Chelyabinsk Air Burst, please see the hour-long 
video lecture at 

 
http://www.lpi.usra.edu/education/lectures/ 

 
 

Title 
The 2013 Chelyabinsk Air Burst and the Hazards of Near-Earth Asteroid 

Impacts 
 

Presented by 
David A. Kring 

David A. Kring 

http://www.lpi.usra.edu/education/lectures/
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