VORTICES SSERVI Team Summary

Ben Bussey (PI)
Planetary Exploration Group
JHU/APL
Expand our understanding of the life cycle of volatiles and planetary regoliths as well as their interaction

- Major Research Themes
- Volatiles
 - Sources, Processes, and Sinks
- Regolith
 - Origin and Evolution on Airless Bodies
- Exploration
 - Resources: Identification and Exploitation
 - Filling Strategic Knowledge Gaps
The Team

<table>
<thead>
<tr>
<th>PI</th>
<th>Collabs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ben Bussey (JHU/APL)</td>
<td>Rachel Klima (JHU/APL)</td>
</tr>
<tr>
<td>Jerome Johnson (U. Alaska)</td>
<td>Olivier Barnouin (JHU/APL)</td>
</tr>
<tr>
<td>DPIs</td>
<td></td>
</tr>
<tr>
<td>Jeff Plescia (JHU/APL)</td>
<td>David Lawrence (JHU/APL)</td>
</tr>
<tr>
<td>Anton Kulchitsky (U. Alaska)</td>
<td>David Blewett (JHU/APL)</td>
</tr>
<tr>
<td>Andy Rivkin (JHU/APL)</td>
<td>Neil Bowles (Oxford U.)</td>
</tr>
<tr>
<td>Chris Magri (U. Maine)</td>
<td>John Bradley (LLNL)</td>
</tr>
<tr>
<td>Co-Is</td>
<td></td>
</tr>
<tr>
<td>Lynn Carter (NASA/GSFC)</td>
<td>Alexandra Matiella-Novak (JHU/APL)</td>
</tr>
<tr>
<td>Andy McGovern (JHU/APL)</td>
<td>Marco Delbo (CNDLRS)</td>
</tr>
<tr>
<td>Josh Cahill (JHU/APL)</td>
<td>Andy McGovern (JHU/APL)</td>
</tr>
<tr>
<td>Richard Miller (U. Alabama)</td>
<td>Andrew Dombard (U. Ill. Chi.)</td>
</tr>
<tr>
<td>Darby Dyer (Mt. Holyoke)</td>
<td>Mike Nolan (Arecibo)</td>
</tr>
<tr>
<td>Doug Eng (JHU/APL)</td>
<td>Matt Fouch (Carnegie)</td>
</tr>
<tr>
<td>Jeff Gillis-Davis (U. Hawaii)</td>
<td>Thomas Orlando (GIT)</td>
</tr>
<tr>
<td>Jeff Plescia (JHU/APL)</td>
<td>Yanga Fernandez (UCF)</td>
</tr>
<tr>
<td>Ben Greenhagen (NASA/JPL)</td>
<td>Richard Miller (U. Alabama)</td>
</tr>
<tr>
<td>KT Ramesh (JHU)</td>
<td>John Bradley (LLNL)</td>
</tr>
<tr>
<td>Paul Hayne (NASA/JPL)</td>
<td>Christian Koeberl (U. Vienna)</td>
</tr>
<tr>
<td>Andy Rivkin (JHU/APL)</td>
<td>Ralf Kaiser (H. Hawaii)</td>
</tr>
<tr>
<td>Karl Hibbits (JHU/APL)</td>
<td>Patrick Michel (CNDLRS)</td>
</tr>
<tr>
<td>Matt Siegler (NASA/JPL)</td>
<td>Mark Robinson (ASU)</td>
</tr>
<tr>
<td>Ellen Howell (Arecibo)</td>
<td>Gerald Sanders (NASA/JSC)</td>
</tr>
<tr>
<td>Dana Hurley (JHU/APL)</td>
<td>Paul Spudis (LPI)</td>
</tr>
</tbody>
</table>
The Team
Volatile Species, Migration, Evolution

- What are the volatiles on the Moon, Asteroids, Phobos and Deimos?
- What is the origin of the volatiles?
- How do the volatiles move across and interact with the surface?
- What is the ultimate fate of the volatiles?
 - Destroyed, or a potential resource?
What are the volatiles on the Moon, Asteroids, Phobos and Deimos?

- Understanding the inventory relies on remote sensing (spectral, particle interactions)
 - Neutron
 - Lunar Prospector
 - Lunar Reconnaissance Orbiter
 - DAWN
 - Continue enhanced model development incorporating additional data sets.

- NEAR gamma-ray may provide indirect measure of H concentration
Measure hydration band in anhydrous materials

- OH/H$_2$O being discovered in “unexpected” places
 - Impactor contamination (Vesta?)
 - Solar wind created (Moon?)
 - Reinterpret body history
 - (Moon? Eros?)

- Spectral libraries usually contain non-optimized data in 3-µm region
 - Affected by terrestrial water (see next slide)

- Take new measurements of anhydrous materials (olivine/pyroxene/HED/etc.) through heating sequence to get “water free” spectrum for mixture modeling

As material is heated, adsorbed H$_2$O is removed. This spectrum, taken in the APL spectral lab by Takir et al. uses a carbonaceous chondrite with native OH. We will use anhydrous materials.
Volatile-Regolith Studies

- Unique Laboratory Capabilities (JHU-APL Planetary Science Optics Lab):
 - Unique VUV – Mid-IR bidirectional reflectance measurements (same type of measurements as made by spacecraft).
 - Unique temperature range (140K – 650 K) to simulate surfaces of asteroids to Mercury.
 - Ultra-high vacuum conditions (relevant to airless bodies).
Model the water-free spectrum of anhydrous materials

- Spectral libraries often contain but non-optimized data in 3-µm region
 - Often not worth extra effort for specific investigations to remove effect of terrestrial water
 - If desired to use data for 3-µm studies, must remove effect of terrestrial water

- Model water in these materials, create water-free spectra, greatly expand set of end members for spectral modeling

Example fit: olivine spectrum (blue), with water fit by Gaussians using band decomposition analysis technique (dashed lines) and total fit (black line).
Modeling volatile formation/deposition

- **Objective**
 - Quantify the initial distribution of solar wind implanted elements in exposed regolith on the Moon, NEAs, Phobos, and Deimos

- **Significance**
 - Integrated over long time periods, the steady stream of solar wind supplies large amounts of volatile elements, which are potential resources for exploration
Modeling volatile formation/deposition

- **Methodology**
 - Use the COUPi DEM to simulate solar wind access with roughness on the size scale of individual reolgith grains
 - Use spacecraft data to quantify the monthly effect of passage through the magnetotail on the map of fluence of solar wind to the moon’s surface
COUPi
Controllable Objects Unbounded Particles interactions (COUPi)
How do the volatiles move across and interact with the surface?

- Volatile migration is thermally driven
 - Surface temperature distribution ($f(\text{day, season})$)
 - Subsurface temperature profile
 - Shape
 - Rotation
 - Thermal properties
- Volatiles interact with the surface grains physically and chemically
 - Adsorption, absorption, chemical bonding
Temperature Programmed Desorption to understand the water at the poles and its evolution over time (not the formation of solar wind OH).

Mare analog (top) adsorbs less water than the high lands analog (bottom). The peak at 155K is due to water-ice subliming and is not adsorbed water.

Even the most adsorptive material will not retain adsorbed molecular water on any part of the illuminated Moon.
Migration of H$_2$O or other volatiles along grains on airless body.

Couple Monte-Carlo modeling with “surface science” knowledge of sticking coefficients and residence times for more complete understanding of water evolution in surfaces of airless bodies.
H$_2$O and OH Interactions with Regolith

- Source - Proton Implantation
 - Defect production, H trapping
- Evolution - Diffusion
 - Known rates, effects of defects
- Sink - Destruction
 - Recombinative, photodesorption

- OH mobility – It may be that what’s really mobile is just the H, it temporarily bonds with O in silicate grain (producing observed OH signature). Then the H moves on.

- H$_2$O could be made in micrometeorite impacts, reduce FeO to nanophase iron, release O, combine with H$_2$.

Equilibrium OH column density (Grieves and Hibbitts).
Global Gardening Model.

Lead: Dr. Dana Hurley
What is the ultimate fate of the volatiles?

- Do they “run free”?
- Are they destroyed?
- Are they trapped for ever?
Surface & subsurface temperatures

- Moon – relatively straight forward, well understood topography, insolation, rotation and orientation

- Small bodies – more poorly defined and large range of parameters

- SHERMAN thermophysical model to identify locations where volatiles may be stable
 - Incorporate temperature-dependent thermal conductivity
 - Adapt lunar regolith density profiles to asteroids
 - Investigate lateral heat transport
 - Implement more realistic sun, Earth, and Mars as illumination/heat sources
 - Model thermal infrared spectra
 - Move towards modeling binary asteroids and lunar eclipses

- Validate SHERMAN against Diviner lunar observations

Baetica region of Lutetia. (A) False color; (B) surface temperature derived from VIRTIS (figure from Coradini et al., 2011).
Evaluate the potential for thermally stable volatiles on NEAs

- Model and investigate the surface and subsurface temperature distributions on various NEAs
- Actual observations will constrain the range of orbital, size, shapes, and spin states for a range of regolith types under different illumination conditions

Thermal and physical analysis of lunar non-polar PSRs

- Characterize non-polar PSRs (<80°) and evaluate their ability to sequester volatiles
- Combine SHERMAN models with observations from Diviner, Mini-RF, LAMP, LROC, and M3
How do regoliths form on air-less planetary bodies?
Is the same process responsible everywhere?
What are the properties of regolith and how do they evolve over time?
Micrometeorite bombardment vs. thermal fatigue

- Micrometeorite bombardment is the canonical model for lunar regolith formation (progressive mechanical abrasion over time).

- But for asteroids... lower impact velocities (~5 km/s vs. ~15 km/s on the Moon); lower surface gravity, lower escape velocities on asteroids (particularly small bodies like Itokawa).

- For MBA, micrometeorite velocities are too (?) low for such mechanical abrasion. Thermal fatigue has been proposed to disaggregate rocks.
Thermal fatigue

Thermally cycle samples to understand how they weaken as a function of composition, grain size, thermal amplitude and period.

- Development of regolith models
 - Develop a scaled thermal fragmentation model
 - Model regolith evolution and the coupling of multiple mechanisms

Time required to break rocks on asteroids by thermal fatigue

For an albedo=0.2, P=2.5h, thermal inertia = 300 J m⁻² s⁻₀.₅ K⁻¹
Thermal fatigue

We can test this on the Moon.

Areas of permanent shadow can be imaged. These low-temperature areas are isothermal and thus should not experience thermal fatigue stresses.

If micrometeorite is the sole mechanism on the Moon, rock size-frequency distribution and regolith properties should be similar to illuminated areas.

If thermal fatigue is important on the Moon, materials may be different.

Red line encloses area of permanent shadow
What processes are responsible for changing the surface chemistry, fine-scale morphology, and spectral signature?

- **Micrometeorite bombardment**
 - Heating, melting vaporization – agglutinate formation, nanophase Fe formation, O liberation.
 - Creating fresh, unrequited surfaces – activate chemistry

- **Irradiation – solar and galactic cosmic rays**
 - Crater radiation damaged surface – activate chemistry

Influences the ability of the surface to hold / modify H, O, OH, H$_2$O.

Influence of both processes will vary with composition, exposure history, location in the solar system (Cis-lunar space vs. MBA)

Affects our interpretation of what we are remote sensing.
Space Weathering

- Impact heating
 - melting
 - vaporization
 - dissociation
 - deposition

- Fe, O, H, Si
Micrometeorite bombardment, simulated by pulse laser irradiation
Proton (H\(^+\)) implantation
Interactions between the two studied as a function chemistry/mineralogy/petrologic type
Space Weathering

- Spectroscopic measurement from UV through thermal IR
- Scanning Transmission Electron Microscopy and Energy Dispersive X-rays
- Valence Electron Energy-Loss Spectroscopy (VEELS) will be used to detect chemically bound water and OH-produced in simulations.
- Raman, infrared spectra and mass spectrometers will be used to measure water released during irradiation and heating.
- **Results of this task provide a framework for Task 5, and feed into Task 9.**
Although the previous tasks are “science driven” they will supply data of use to HEOMD

- We have several tasks that are “Exploration-driven”

- Flexibility to ensure we acquire results which are of the most use to you

- Two Themes
 1. Resources: Identification & Exploitation
 2. Closing SKGs
Search for Resources

Use multiple data sets to devise models of the distribution of volatiles and available sunlight in areas near the poles of the Moon
Collate neutron Pixon models, Mini-RF radar, LAMP, LEND, LOLA and WAC data to locate cold traps and probably ice deposits
Backscatter modeling of Mini-RF data to predict locations of water ice deposits
Incorporate and coordinate with results of polar lighting studies

Devise scenarios for the harvesting of polar volatiles, including determination of mining locales, traverse distances, energy requirements, and likely production rates
Architecture studies of lunar surface operations scenarios
Required elements, masses, power, duty cycles
Predicted yield of product as function of ice concentration levels, distances, deposit heterogeneity
Illumination Characterization for Surface Operations

- **High-Resolution Illumination Studies**
 - Current best is 20m DEMs, goal is to incorporate 2m NAC DEMs
 - Conduct analysis of permanent shadow on NEAs as a function of spin axis
 - Generate high-res NEA topography using photoclinometry

- **Rover Traverse Planning Tool**
 - Determine route that minimizes exposure to shadows
 - Also consider communication requirements
LROC / Simulation Comparison

- One is generated from a 100 m LOLA grid and the other is a raw LROC image.
- LOLA-based image generated with ray traced extended source shadows plus Gaskell’s fits to the McEwen Lunar-Lambert photometric function.
April 2017 Opportunity

20 m/pix LOLA DTM, 80°S to 90°S

85.75°S, 315.0°E, 1 m Mast
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
1 m Transmitter (A1), 1 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
1 m Transmitter (A1), 2 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
2 m Transmitter (A1), 1 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
2 m Transmitter (A1), 2 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
3 m Transmitter (A1), 1 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
3 m Transmitter (A1), 2 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
5 m Transmitter (A1), 3 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
10 m Transmitter (A1), 3 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
25 m Transmitter (A1), 3 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
50 m Transmitter (A1), 3 m receiver
Darkened areas do NOT have line of sight with transmitter
Oblique Stereographic Shaded Relief DTM Centered on A1
20 m/pix, 500x500 pixels (10 km x 10 km)
100 m Transmitter (A1), 3 m receiver
Darkened areas do NOT have line of sight with transmitter
Post the recent armada of international missions, we now have topography and image data with sufficient fidelity to fully characterize the polar illumination conditions:

- Maximum single period of illumination
- Determine all eclipse periods
- Exact shadow locations
- Effect of mast height

Also discovered that permanent shadow can exist as far from the poles as 58°:

- Implications for easier access to volatiles
SKGs

- Which can be addressed using current data/research?

- For those that can’t…..
 - What instruments/missions are required to get the data needed
Lunar Polar Low-Altitude Neutron Experiment (PLANE)

- Low altitude mission (<20 km) to obtain high spatial resolution
 - Elliptical orbit with periapsis at lunar south pole.
 - Mission duration: six months.
- Measure epithermal neutrons with two ^3He neutron sensors
 - Same as LP sensors
 - Total instrument mass <5 kg
Results: Lunar South Pole

- Use spatial reconstructed map as “ground truth”.
 - Based on measured LP data.
 - Individual PSRs are resolved.
- Simulated Lunar PLANE data resolve individual PSRs.
- Compare with LP data that do not resolve PSRs.
Results: Lunar South Pole

- Use spatial reconstructed map as “ground truth”.
 - Based on measured LP data.
 - Individual PSRs are resolved.
- Simulated Lunar PLANE data resolve individual PSRs.
- Compare with LP data that do not resolve PSRs.
Investigated new mission concept to measure lunar polar hydrogen concentrations at high spatial resolution.

Feasible mission design exists for low-altitude, polar measurements.

Hydrogen concentrations within individual PSRs can be measured with a simple, six-month mission.
VORTICES E/PO Activities

- **NASA Education Outcome 1 – Training the Future Workforce**
 - High school Mentor Program at APL
 - Internships for qualified high school students who are placed one-on-one with a Laboratory staff member to either complete a science project or gain work experience for school credit.
 - NASA/APL Summer Internship Program
 - Hands-on research opportunities for undergraduate and graduate students, mentored by the VORTICES team at APL
 - Support for Post-doctoral researchers

- **NASA Education Outcome 2 – Attract and Retain Students in STEM Disciplines**
 - Middle school Science Pre-service Teacher Workshop (also aligns to NASA Outcome 1) – Cornerstone Activity
 - Partnering with Education Departments at Historically Black Colleges and Universities, Hispanic Serving Institutions, and Tribal Colleges.
 - Workshops will primarily be conducted in the Maryland and Texas regions; both have high percentages of underserved populations and a concentration of minority institutions; one workshop per year.
VORTICES E/PO Activities (cont.)

NASA Education Outcome 2 – Attract and Retain Students in STEM Disciplines (cont.)
- Space Academy for Middle School Students – 1/year
 - One-day event that includes a question and answer session with VORTICES scientists and engineers, and tours of APL’s facilities.

NASA Education Outcome 3 – Informal Education Strategic Partnerships
- Partnership with the Maryland Science Center for International Observe the Moon Nights.
- Partnerships with Museum Alliance for informal educator training by VORTICES team scientists.
VORTICES Take Aways

- Experienced team will conduct a strategic research project to better understand the life cycles of volatiles

- There is flexibility in the plan to ensure we target the areas of knowledge that are of the most interest to HEOMD
Remaining in sunlight

- Using LunarShader, create gridded lighting files over known DEM at known time intervals
 - 30 m/pixel LOLA DEM, 1 hr time intervals, 10/22/18 to 10/22/19

Current algorithm:
- Choose initial location, check lighting conditions at current and surrounding locations each time step
 - always know conditions for two future time
- Update current position as necessary to remain in sunlight
 - Moves at “average” rover speeds 30 m/hr (MER) to 90 m/hr (MSL)
The "rover" stays in the same location as long as it remains sunlit. If, during the next two time steps, the pixel transitions to shade, we search surrounding areas for light.
Algorithm for tracking sunlight

Step 1: Query the 8 surrounding pixels

- If one pixel is lit, move to that spot on next time step
- If more than one is lit, move to the spot that has the longest continuous illumination
- If none are lit, move to Step 2

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1/12</td>
<td>1/5</td>
<td>0</td>
<td>0</td>
<td>1/90</td>
</tr>
<tr>
<td>1/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/95</td>
</tr>
<tr>
<td>1/12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/100</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1/90</td>
</tr>
<tr>
<td>1/1</td>
<td>1/5</td>
<td>1/15</td>
<td>1/12</td>
<td>1/12</td>
</tr>
</tbody>
</table>
Algorithm for tracking sunlight

Step 2: Query the 24 surrounding pixels

- If one pixel is lit, move to that spot on next time step
- If more than one is lit, move to the spot that has the longest continuous illumination